SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE TITLE:	FLUID MEC	HANICS II		
CODE NO. :	MCH225		SEMESTER:	SIX
PROGRAM:	MECHANIC	AL TECHNOLOGY		
AUTHOR:	MARK S. SI	EELER		
DATE:	JAN 2011	PREVIOUS OUTI	INE DATED:	
APPROVED:		"Corey Meunie	m''	
		-		
		CHAIR		DATE
TOTAL CREDITS:	FIVE			
PREREQUISITE(S):	MCH125 - N	MECHANICS OF FL	UIDS	
HOURS/WEEK:	THREE		00	
Copyright ©2011 The Sault College of Applied Arts & Technology Reproduction of this document by any means, in whole or in part, without prior written permission of Sault College of Applied Arts & Technology is prohibited. For additional information, please contact Corey Meunier, Chair School of Technology & Skilled Trades (705) 759-2554. Ext. 2610				

I. COURSE DESCRIPTION:

A course is an extension of MCH125 and will cover topics pertaining to energy as it relates to fluid, dimensional analysis, the use of boundary layers, flow in conduits including turbulent and laminar flow, pressure/velocity and flow measurements.

II. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE:

Upon successful completion of this course, the student will demonstrate the ability to:

1. Review of Fluid Mechanics I and The Energy Principle Potential Elements of the Performance:

- Derive the energy equation
- Demonstrate knowledge of how the control volume approach is applied to the first law of thermodynamics
- Understand and explain the concepts of flow work and shaft work
- Write, understand and apply the basic and more general form of the energy equation
- Apply forms of the energy equation for situations such as steady flow of an incompressible fluid in a pipe, non-viscous flow and incompressible flow
- Applications of the Energy, Momentum and Continuity Equation in combination and understanding of the concept of abrupt expansion and forces on transition
- Understand and Explain the concept of hydraulic and energy grade lines

2. Dimensional Analysis and Similitude

Potential Elements of the Performance:

- Understanding of why there is a need for dimensional similitude
- Demonstrate dimensions through the utilization of dimensions in equations
- Understanding of the Buckingham Theorem and its application regarding dimensional and dimensionless terms
- Apply various methods of dimensional analysis:
 - a) The Step by Step Method
 - b) The Exponent Method
- Summarize and Explain the steps (process) of dimensional analysis

- Understand the limitations of dimensional analysis
- Identify common dimensionless numbers
- Explain and understand the scope of similitude as it applies to developing conclusions from models including geometric similitude and dynamic similitude
- Explain the significance of the pressure coefficient using examples
- Approximate and solve problems with High Reynolds Numbers

3. Surface Resistance

Potential Elements of the Performance:

- Understand and apply principles of surface resistance with uniform laminar flow for situations such as:
 - a) flow produced by a moving plate
 - b) liquid flow down an inclined plane
 - c) flow between stationary parallel plates
 - d) fully developed flow between parallel plates using the Navier-Stokes equation
- Define and explain Qualitative properties of a boundary layer, flow pattern in a boundary layer and shear stress distribution along a boundary layer
- Apply quantitative relations of the laminar boundary layer using the boundary layer equations
- Discuss and demonstrate understanding of shear stress, shearing resistance for a given surface of a given size and shear stress coefficients that relate to laminar boundary layers
- Apply quantitative relations of the turbulent boundary layer
- Discuss and Demonstrate understanding velocity distribution in the turbulent boundary layer along a smooth wall, Prandt's Mixing Length Theory, Power Law Theory for velocity distribution, the momentum equation applied to boundary layers, thickness of the turbulent boundary layer on a flat plate and shearing resistance of the turbulent boundary layer on a flat plate
- Describe and apply boundary layer control

4. Flow in Conduits

Potential Elements of the Performance:

- Understand and apply concepts of shear stress distribution across a pipe section
- Describe and demonstrate understanding of laminar flow in pipes and criterion for laminar or turbulent flow in a pipe

- In regards to turbulent flow in a pipe, discuss turbulence and its influence in pipe flow
- Differentiate between velocity distribution and resistance in smooth pipes and rough pipes
- Demonstrate knowledge of applying explicit equations to calculate Q (flow rate) and D (diameter)
- Explain and apply concepts in regards to flow at pipe inlets and losses from fittings including flow though and elbow, transition losses and grade lines
- Demonstrate and apply knowledge of pipe systems for simple pumps in a pipeline, pipes in parallel and pipe networks
- Explain and apply equations for turbulent flow in non-circular conduits such as uniform flow in open channels

5. Flow Measurements and Turbo Machinery

Potential Elements of the Performance:

- Identify and Explain the following tools and procedures to measure pressure and velocity:
 - a) Stagnation tube
 - b) The vane and propeller anemometer
 - c) Cup anemometer
 - d) Hot wire and hot film anemometer
 - e) Laser Doppler anemometer
 - f) Marker methods
- Identify and Explain the following tools and procedures to measure flow rates:
 - a) Direct volume or weight measurements
 - b) Velocity-area integration
 - c) Orifices
 - d) Head loss for orifices
 - e) Venture meters
 - f) Flow nozzles
 - g) Electromagnetic flow meters
 - h) Ultrasonic flow meters
 - i) Turbine flow meters
 - j) Vortex flow meters
 - k) Rotameter
 - I) Rectangular weir
- Describe and understand propeller theory
- Understand and apply axial flow pumps in regards to pressure change, head and discharge coefficients for pumps, and the range of application of axial flow machines
- Understand and apply concepts of radial flow machines

III. TOPICS:

- 1. Review of Fluid Mechanics I and The Energy Principle
- 2. Dimensional Analysis and Similitude
- 3. Surface Resistance
- 4. Flow in Conduits
- 5. Flow Measurements and Turbo Machinery

IV. REQUIRED RESOURCES/TEXTS/MATERIALS:

Crowe, Clayton T., Engineering Fluid Mechanics, 7th Ed., John Wiley and Sons, Inc, ISBN 0-471-38482-8

V. EVALUATION PROCESS/GRADING SYSTEM:

Type of Grading	Duration	Mark Breakdown	Topics
Term Test 1	2.0 hours	20%	Energy Principle/ Dimensional Analysis and Similitude
Term Test 2	2.0 hours	20%	Surface Resistance/ Flow In Conduits
Final Exam	3.0 hours	30%	All course Material
Quiz	0.5 hours x4	10%	All course Material
Laboratories	10.0 hours	20%	All Experiment assignments and attendance

The following semester grades will be assigned to students:

Grade	Definition	Grade Point Equivalent
A+ A	90 – 100% 80 – 89%	4.00
В	70 - 79%	3.00
С	60 - 69%	2.00
D	50 – 59%	1.00
F (Fail)	49% and below	0.00
CR (Credit)	Credit for diploma requirements has been awarded.	
S	Satisfactory achievement in field /clinical placement or non-graded subject area.	
U	Unsatisfactory achievement in field/clinical placement or non-graded subject area	
Х	A temporary grade limited to situations with extenuating circumstances giving a student additional time to complete the	
NR	Grade not reported to Registrar's office.	

W Student has withdrawn from the course without academic penalty.

VI. SPECIAL NOTES:

Attendance:

Sault College is committed to student success. There is a direct correlation between academic performance and class attendance; therefore, for the benefit of all its constituents, all students are encouraged to attend all of their scheduled learning and evaluation sessions. This implies arriving on time and remaining for the duration of the scheduled session.

VII. COURSE OUTLINE ADDENDUM:

The provisions contained in the addendum located on the portal form part of this course outline.

APPENDIX

MECHANICAL ENGINEERING TECHNOLOGY - 4043 Mechanics of Fluids II – MCH225

DISTRIBUTION OF HOURS

Sequence/Type	Topics	# of
		Hours
Lecture	Review of Fluid Mechanics I & The Energy	0
	Principle	8
Experiment		2
Lecture	Dimensional Analysis and Similitude	8
Experiment		2
Lab		2
Test		2
Lecture	Surface Resistance	8
Experiment		2
Lecture	Flow In Conduits	8
Experiment		2
Lab		2
Test		2
Lecture	Flow Measurements and Turbo-Machinery	12
Experiment		2
Lab		2
Testing	Final Exam	3
	Sub-Totals	
	Lectures	44
[p		16
	Labs/Experiments	10
	Testing	4
	Exam	3
	Total	67

MECHANICAL ENGINEERING TECHNOLOGY - 4043 Mechanics of Fluids II – MCH225

COURSE PLAN – Based on the text Engineering Fluid Mechanics, 7th ed., by Crowe, Roberson and Elger)

Week/Hours	Topic/Chapter	Concepts Covered	In Class Lab (equipment needed)
Week 1/2/3 (8 hours Lecture and 2 hour Experiment)	Review of Fluid Mechanics I concepts and The Energy Principle Chapter 7 :	 Review of Areas Covered in Fluid Mechanics I Derivation of the Energy Equation: Controlled volume approach applied to the first law of thermodynamics, flow work, shaft work, Basic Form of the Energy Equation Simplified Forms Of the Energy Equation: Steady Flow Energy Equation, Energy Flow for Steady flow of an incompressible fluid in a pipe, Energy Equation for Non- viscous, one dimensional, Incompressible flow Application of the Energy, Momentum and Continuity Equation in Combination: Abrupt Expansion, Forces on Transitions, Concept of the Hydraulic and Energy Grade Lines 	Experiment 1 – 2 hour experiment
Week 3/4/5 (8 Hours Lecture and 2 hour experiment)	Chapter 8: Dimensional Analysis and Similitude	 The Need for Dimensional Analysis Dimensions and Equations The Buckingham II Theorem Dimensional Analysis: The Step- by-Step Method, The Exponent Method, Recapitulation of the Process of Dimensional Analysis, Limitations of Dimensional Analysis Common Dimensionless Numbers Similitude: Scope of Similitude, 	Experiment 2 – 2 hour experiment

		Shearing Resistance of the	
		Turbulent Boundary Layer on	
		a Flat Plate	
		5. Boundary Layer Control	
Week 9/10/11	Flow in Conduits	1. Shear Stress Distribution Across a	Experiment 4 –
(8 Hours	Chapter 10:	Pipe Section	2 hour
Lecture and 2	-	2 Laminar Flow in Pines	experiment
hours		3 Criterion for Laminar or	
Experiment)		Turbulant Flow in a Pine	
•		A Turbulant Flow in a Pipe	
		4. Turbulence and its Influence in	
		Ding Flow, Valagity	
		Pipe Flow, velocity	
		Distribution and Resistance in	
		Distribution and Desistence in	
		Distribution and Resistance in	
		Rough Pipes, Explicit Equation	
		for Q and D	
		5. Flow at Pipe Inlets and Losses	
		from Fittings: Flow in a pipe	
		inlet, Flow through an elbow,	
		Transition Losses and Grade	
		Lines,	
		6. Pipe Systems : Simple Pump in a	
		Pipeline, Pipes in Parallel, Pipe	
		Networks,	
		7. Turbulent Flow in Non-Circular	
		Conduits: Basic Development,	
		Uniform Flow in Open	
		Channels, The Chezy and	
		Manning Equation, Manning	
		Equation Traditional System of	
		Units, Best Hydraulic Section,	
		Flood Flows, Uniform Flow in	
		Culverts and Sewers	
Week 12	Review of	1. Review Lab and Term Test	Lab #2 – in
(2 hour lab and	Chapters 9 and		class review 2
2 hour term	10		hours
test)			
Week	Flow	1. Instruments for the	Experiment 5 –
13/14/15/16	Measurements	measurement of velocity and	2 hour
(12 Hours	Chapter 13 and	Pressure: Stagnation Tube, Flow	experiment and
Lecture and 2	Turbo-machinery	Direction with Stagnation-Type	Lab #3 review
hours of	Chapter 14	Tubes, Static Tube, The Vane and	2 nours
experiment		Propeller Anemometer, Cup	
and 2 hours of		Anemometer, Hot wire and Hot	

review lab)	Film Anemometer, Laser Doppler	
	Anemometer, Marker Methods	
	2 Instruments and Procedures for	
	Measurement of Flow Bates:	
	Direct Volume or Weight	
	Direct volume of weight	
	ivieasurements, velocity-Area	
	Integration, Orifices, Head Loss	
	for Orifices, Venturi Meter,	
	Flow Nozzles, Electromagnetic	
	Flow meter, Ultrasonic Flow	
	Meter, Turbine Flow Meter,	
	Vortex Flow Meter, Rotameter,	
	Rectangular Weir.	
	3. Propeller Theory: Blade Analysis.	
	4 Avial Flow Pumps: Pressure	
	Changes Head and Discharge	
	Challges, flead and Dischalge	
	of Application of Axial Flow	
	Machines,	
	5. Radial Flow Machines:	
	Centrifugal Pumps,	